

Avionics for Exploration

Technology Exchange Conference November 2007

Dr. Robert F. Hodson Avionics Lead Robert.f.hodson@nasa.gov 757-864-2326

Dr. Tak Ng Avionics Technology Lead t.ng@nasa.gov 757-864-1097

Software and Avionics Integration Office
Constellation Program Office

CONSTELLATION

Purpose

- Make NASA personnel available to interact with industry, academia, and other organizations to foster new ideas
- Present NASA mission avionics drivers
- Present initial ideas to meet
 NASA's future avionics needs
- Solicit ideas to help meet future NASA mission needs

Overview

- NASA Avionics Presentation
- **♦** Feedback
- Break into splinter groups if desirable
- ♦ 1-on-1 sessions
- Discussion "on the floor" at avionics exhibit

Future Missions

Avionics Drivers

Safety

Reliability, Fault Tolerance, Human Rating

Survivability

- Ascent, Descent, Radiation, Vacuum
- Long Duration Exposure

Resource limitations

Power, Mass, Volume

Performance

Video Rates, Autonomy, Docking, Landing

System of systems

Interoperability, Managing complexity, Commonality

Affordability

Development/Mission Cost, Durability, Repair/Maintenance

Evolving Architecture

Flexible, Scalable, Extensible, Adaptable, Reusable

Avionics: Goal, Issues

Avionics Goal: Provide extensible interoperable avionics solutions for a broad class of NASA exploration missions to optimally meet or exceed requirements while managing the logistics of development, deployment, and maintenance of avionics in the Constellation architecture.

Current Avionics Issues

- Little commonality
 - Making sparing untenable for lunar missions
- Box-level line replaceable units (LRUs)
 - Untenable maintenance philosophy for outpost missions
- Point designs
 - Little flexibility, adaptability, or opportunity for design variation to accommodate multi-use avionics
- High power, volume, and mass
 - Need to leverage approaches that optimize "system performance"

Where We Are Today

- ♦ Dominated by custom solutions, often vendor proprietary
 - Limited use of standards with many exceptions

Some Ideas for Future Avionics Systems

- Tunable Avionics
- Scalable Avionics
- Reconfigurable Avionics
- Redundancy Management
- Wireless Technologies
- Storage technologies
- Software Approach
- Self-Describing Systems
- Radiation Mitigation
- Managing Power
- Business Models and Investment Strategy

Where We Want to Be

Remote Interface Unit

Processing Unit

Sensors

Actuators

Memory

Bus Wireless

Multi-Tier Tunable Avionics

- Use of Tunable Processor Units, Remote Interface Units, and Bus Interconnect to optimize designs to meet requirements of varied missions with common designs while managing power
- Tunable Processor Units (PUs) provide high top-end performance with traditional RTOS functionality extended for redundancy management and other middleware functionality. Reconfigurable computing (RC) to special purpose high throughput applications.
- Tunable Remote Interface Units (RIUs) are designed for IO scalability and optimized for power, mass, and volume. The RIU's capability is comparable to a microcontroller rather than the general purpose microprocessor of the PU.
- Buses with tunable bandwidth (i.e. tunable frequency and/or data width) allows matching the interconnect to the mission requirements. Meet determinism requirements for critical system while supporting IP-based interoperability

Modular Scalable Avionics

common modular maintainable standard for space avionics systems

Reconfigurable Avionics

- Devices, modules, or systems can be reconfigured to support multiple mission and applications with common designed.
- Potential benefits
 - Reduction of spares
 - High performance for selected applications
 - video processing, DSP, software radio, real-time hazard avoidance,...
 - Reduced power for selected applications

Redundancy Management

- For effective fault-tolerance a proven-reliable redundancy management hardware/software solution is required. This solution needs to be designed into the avionics architecture from inception and should provide transparent error-free synchronization and data transfer.
- ♦ Redundancy management requirements vary from 0, 1, to 2 fault tolerant systems with various strategies (real-time masking, cold-sparing, switchover, etc). Multiple strategies need to be supported.
- Combine redundancy management strategies, with reconfigurable computing and modular-layer software can provide a flexible (mission selectable) redundancy management solution.
- Well defined interfaces to application-independent redundancy management.

Wireless Interconnectivity

- Wireless has the potential to reduce wiring harness mass and improve system maintainability
 - Supports deferred sensor placement allowing better decision making
- Wireless technologies to reduce internally hard-wired communications requires study and development
 - Passive and/or active sensor networks
 - Tracking/RFID
 - Wireless instruments
 - Wireless PDAs, laptops
 - Wireless voice comm
 - Sensor web/mesh technology

Storage Capability

- Memory technologies have always been unique (RAM, disk/tape, EEPROM, FLASH, etc.) and present challenges in the space environment (SEEs, TID, loads, vacuum, etc.).
- Both volatile and non-volatile (NV) memory are needed for program and data storage. Telemetry must be buffer during communication outages and during high bandwidth events. Documentation must be stored for a paperless cockpit.
- Reliable scalable memory solutions are needed to support mission requirements.
- Network-based distributed repositories enables sharing of resources

Modular-Layered-Partitioned Software Support

- The avionics concept should mesh with a modular layered software concept that provides:
 - Multiple levels of abstraction with well defined interfaces between layers
 - RTOS functionality
 - Redundancy management & abstraction
 - I/O management
 - Software partitioning
 - Firewalls for functions of different criticality
 - Network/Communication abstraction
 - Well defined application interfaces

Space Partitioning

Time Partitioning

Self-Describing Avionics & Software

Reliable Radiation Tolerant Systems

Lunar Environment

- Primary Radiation Sources:
 - Galactic Cosmic Rays
 - Constant Rate
 - Omni-Directional
 - Solar Flares
 - 11 year cycle 4 quiet/7active, log-normal intensity distribution
 - Typical flare lasts approx 24 hours, with highest energy particles arriving first
- No lunar magnetosphere
 - No shielding from Solar Radiation or Galactic Cosmic Rays (GCRs)

- CMOS devices screened for TID and Latchup can be utilized but appropriate testing and qualification are needed to ensure reliability
- SOI devices are preferred when available
 - latchup immune, better upset resilience
- Single event upsets require mitigation, upset rates can be significant
 - Redundancy
 - System level (i.e. 1FT/2FT architecture)
 - Device level (i.e. TMR)
 - Encoding (i.e. EDAC)
 - Time redundant (i.e. TTMR)
 - Restart/Reset techniques
- Commercial/military screened devices should be used along with rad-hard by design parts when available to improve reliability

Reducing Power

- Leverage current & next generation of low power devices when possible
 - Obtained through feature shrink and voltage scaling
 - Still requires redundancy for fault-tolerance and SEU mitigation
 - Adverse effect on SEU tolerance
- Clock and data rate tuning
- Sleep modes and performance throttling
 - Requires software management
- Multi-tier modular system allow for optimization of designs
 - Choose module grain-size to control overhead
 - Single function or reconfigurable modules
- Power reduction through reconfigurable "co-processor" when appropriate.

Power =
$$aNCV^2f + VI_{OFF}$$

Possible Development/Acquisition Approach

Next Generation Architecture

Remote Interface Unit

Processing Unit

Sensors

Actuators

Memory

Bus Wireless